References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Burdon, J., Hayes, M. H. B. & Pick, M. E. (1977). J. Environ. Sci. Health, B12, 37-51.

- Domingos, A., Henriques, R. T., Gama, V., Ameida, M., Lopes Vieira, A. & Alcacer, L. (1988). Synth. Met. 27, B411-416.
- Hofmann, H. J., Cimiraglia, R. & Tomasi, J. (1986). J. Mol. Struct. (Theochem), 139, 213-219.
- Kisch, H., Dümler, W., Nüsslein, F., Zenn, I., Chiorboli, C., Scandola, F., Albrecht, W. & Meier, H. (1991). Z. Phys. Chem. (Frankfurt am Main), 170, 117-127.
- Kisch, H., Fernandez, A., Wakatsuki, Y. & Yamazaki, H. (1985). Z. Naturforsch. Teil B, 40, 292-297.
- Kobayashi, A. & Yukiyoshi, S. (1977). Bull. Chem. Soc. Jpn, 50, 2650– 2656.
- McCleverty, J. A. (1968). Prog. Inorg. Chem. 10, 84-85.
- Russell, J. H. & Wallwork, S. C. (1972). Acta Cryst. B28, 1527-1533.
- Schrauzer, G. N. (1968). Transition Met. Chem. 4, 299-335.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Willner, I., Eichen, Y., Rabinovitz, M., Hoffman, R. & Cohen, S. (1992). J. Am. Chem. Soc. 114, 637-644.

Acta Cryst. (1993). C49, 1632-1636

The Optical Resolution of Bicyclo[2.2.1]hept-5-ene-2-cyanohydrins Using Brucine – a Crystallographic and Molecular-Mechanics Study

A. ALAN PINKERTON

Department of Chemistry, University of Toledo, Toledo, OH 43606, USA

PIERRE-ALAIN CARRUPT, FRANÇOIS CLARET AND PIERRE VOGEL

Institut de chimie organique, Université de Lausanne, 2 rue de la Barre, CH-1005 Lausanne, Switzerland

(Received 9 September 1992; accepted 1 February 1993)

Abstract

The structures of the brucine complexes with (+)-(1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-cyanohydrin and (+)-(1R,2R,4R)-7-oxabicyclo[2.2.1]hept-5-ene-2-cyanohydrin {(6) 2,3-dimethoxystrychnidine-2-hydroxybicyclo[2.2.1]hept-5-ene-2-carbonitrile (1/1) and (7) 2,3-dimethoxystrychnidine-2-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2-carbonitrile (1/1)} have been determined. The primary interaction in the complexes is a hydrogen bond between the OH group of the cyanohydrin and the most basic N atom of brucine. Molecular-mechanics calculations on the 7-oxa derivative indicate that the enan-

tiomeric cyanohydrin will fit into the same cavity in the brucine matrix at the cost of ca 71 kJ mol⁻¹.

Comment

There is current interest in understanding the mechanism of molecular recognition (Schneider, 1991) and in the resolution of racemic mixtures. The use of naturally occurring optically pure bases to form diastereomeric salts of differing solubility from racemic acids has been employed for over a century (Pasteur, 1853). More recently, brucine (1) was used to resolve some tertiary acetylenic alcohols by fractional crystallization of the diastereomeric complexes. For one of the complexes, the primary interaction was shown to be formation of a hydrogen bond between the OH group of the alcohol and N19 of brucine (Toda, Tanaka & Ueda, 1981; Toda, Tanaka, Ueda & Oshima, 1985). Applying this technique to the cyanohydrin mixture, (2)/(3), formed by (\pm) -bicyclo[2.2.1]hept-5-en-2one (4) and (\pm) -7-oxabicyclo[2.2.1]hept-5-en-2-one (5), we have been able to prepare optically pure (+)-(4) and (+)-(5), and also to use the resolved brucine/cyanohydrin complexes directly as synthons for the preparation of natural compounds (Black & Vogel, 1984; Warm & Vogel, 1986a,b, 1987; Vogel, Fattori, Gasparini & LeDrian, 1990; LeDrian & Greene, 1982). We have thus determined the structures of the brucine complexes (6) and (7) of the cyanohydrins derived from (+)-(4) and (+)-(5) to investigate the nature of the interaction in the complex and to gain insight into the determining factors in optical

Acta Crystallographica Section C ISSN 0108-2701 ©1993

REGULAR STRUCTURAL PAPERS

Clemenson, P. I. (1990). Coord. Chem. Rev. 106, 171-203.

Fig. 2. Section of (6) parallel to the *ac* plane at $y = \frac{1}{4}$ (molecules included for $y = 0 - \frac{1}{2}$) showing the channel occupied by guest molecules.

resolution by this technique. The structural study is complemented by molecular-mechanics calculations.

The primary interaction in both complexes is a hydrogen bond between the alcohol functionality of the cyanohydrin and the tertiary amine N atom N19 (Fig. 1). This is in agreement with the work described above on acetylenic alcohols and with the structure of brucine ethanol water solvate (Glover, Gould & Walkinshaw, 1985). The hydrogen-bond formation is in contrast to the observed salt formation when using brucine to resolve racemic acids (Gould, Taylor & Walkinshaw, 1984; Gould & Walkinshaw, 1984; Quinkert, Schmalz, Dzierzynski, Durner & Bats, 1986). The packing of the molecules is similar to that observed for brucine ethanol water solvate (Glover, Gould & Walkinshaw, 1985) and for the acetylenic alcohol complexes (Toda, Tanaka &

Fig. 1. ORTEP representation of the hydrogen-bonded complex (6). Complex (7) is essentially identical.

Fig. 3. Projection of structure (6) on the bc plane showing the screwrelated guest molecules in channels formed by brucine molecular packing.

Ueda, 1981; Toda, Tanaka, Ueda & Oshima, 1985). The cyanohydrin guest molecules spiral around the 2_1 axes parallel to **a** (Fig. 2), thus filling the channels formed by the brucine molecules (Fig. 3)

To obtain insight into the selectivity of the molecular recognition in these systems, we have carried out molecular-mechanics calculations on complex (7). First, a cluster of brucine molecules was built using the *CRYSIN* module of the *SYBYL* software (Tripos Associates, 1991) and symmetry operations generated by the space group. For the calculations, we retained only 17 brucine molecules belonging to a sphere of radius 8 Å around the bicyclic molecule. Two types of calculations were performed, one with the standard Tripos (Tripos Associates, 1991) force field without the electrostatic term and another including the electrostatic term calculated with Gasteiger & Marsili (1980) atomic charges. During the minimizations, the brucine molecules were kept constant (as an aggregate). In the first calculation, the bicyclic part was totally optimized, starting from the crystallographic coordinates, and compared with the crystal structure. The main difference between the two geometries results from the change in the description of the hydrogen bond [the interatomic distance O10'...N19 is 2.711 (3) Å in the crystal structure and 3.014 Å in the model]. Then, the chirality of the bicyclic moiety was inverted, the hydrogen bond held constant at the calculated value (3.014 Å), and the bicyclic part optimized again. An energy difference of ca 63 kJ mol⁻¹ (without the electrostatic term) and ca 71 kJ mol⁻¹ (with the electrostatic term) was calculated, the model with the original chirality being the most stable.

Other calculations with the hydrogen bond between the brucine and the cyanohydrin fixed, as measured in the crystal [2.711 (3) Å], for the two models were also carried out. The energy difference between the two enantiomers was calculated to be even greater (*ca* 109 kJ mol⁻¹).

The calculated lower energy of the observed crystallized form may explain its preferential crystallization; however, this does make the assumption that the complex formed between the enantiomer cyanohydrin and brucine would crystallize with the brucine molecules packed in the same way. The large difference in calculated energy suggests that this is unlikely; however, all reported structures for brucine complexes have similar packing (Glover, Gould & Walkinshaw, 1985). We have not been able to obtain suitable crystals of the other diastereomer to confirm or refute this assumption.

The molecular structure of brucine is comparable in C8 N9 (6) and (7) and also to that previously reported (Glover, C10 Gould & Walkinshaw, 1985; Toda, Tanaka & Ueda, 1981; C11 Toda, Tanaka, Ueda & Oshima, 1985). The two cyanohy-C12 C13 drin molecules are similar and unremarkable. The main C14 difference between them arises from the smaller size of C15 C16 the bridging O atom in (7). C17

Evenarimontal		N19 C20
Experimental		C21
Compound (6)		C22
Crystal data		C23
er joint dana		O24
$C_{23}H_{26}N_2O_4.C_8H_9NO$	Cell parameters from 25	O25
$M_r = 529.64$	reflections	026
Orthorhombic	$\theta = 10 - 13^{\circ}$	027
P2.2.2.	$\mu = 0.086 \text{ mm}^{-1}$	C28
$I Z_1 Z_1 Z_1$	$\mu = 0.000 \text{ mm}$ $T = 204 \text{ K}$	C29
a = 12.519(2) A	I = 294 K	C'
b = 14.286(1) Å	Extended plate	C3'
c = 14.607 (2) Å	$0.28 \times 0.25 \times 0.18 \text{ mm}$	C4'
$V = 2612 (1) \text{ Å}^3$	Colorless	C5'
Z = 4	Crystal source: crystallized	C6′
$D_x = 1.35 \text{ Mg m}^{-3}$	from methanol	C7'
Mo $K\alpha$ radiation		N9'
$\lambda = 0.71073 \text{ Å}$		010

Data collection	
Enraf-Nonius CAD-4	2879 observed reflections
diffractometer	$[I > 3.0\sigma(I)]$
$\theta/2\theta$ scans	$R_{\rm int} = 0.027$
Absorption correction:	$\theta_{\rm max} = 24.97^{\circ}$
refined empirical (Walker	$h = -1 \rightarrow 14$
& Stuart, 1983)	$k = -1 \rightarrow 16$
$T_{\min} = 0.9770, T_{\max} =$	$l = -17 \rightarrow 17$
0.9999	3 standard reflections
5951 measured reflections	frequency: 50 min
4605 independent reflections	intensity variation:
-	7.02%

Refinement

Cl

C2

C3 C4

C5

C6

C7

C18

Refinement on F $(\Delta/\sigma)_{\rm max} = 0.169$ Final R = 0.036 $\Delta \rho_{\rm max} = 0.218 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.110 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.043S = 1.189Atomic scattering factors 2879 reflections 461 parameters H atoms refined isotropically $w = 4F_o^2/[\sigma^2(F_o^2) + 0.0016F_o^4]$

from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for (6)

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

r	ν	7	Um
0 7753 (2)	0.6316 (2)	-0.0525 (2)	0.0367 (7)
0.7259 (2)	0.6308 (2)	0.0319 (2)	0.0367 (7)
0.7868(2)	0.6437 (2)	0.1115 (2)	0.0415 (8)
0.8971(2)	0.6543(2)	0.1077(2)	0.0387 (7)
0.9443(2)	0.6521 (2)	0.0220 (2)	0.0341 (7)
0.8858 (2)	0.6414 (2)	-0.0570(2)	0.0334 (7)
0.9561(2)	0.6491 (2)	-0.1404(2)	0.0326 (7)
1.0701 (2)	0.6381 (2)	-0.0992 (2)	0.0331 (7)
1.0554 (2)	0.6560 (2)	0.0003 (1)	0.0359 (6)
1.1376 (2)	0.6371 (2)	0.0595 (2)	0.0431 (8)
1.2419 (2)	0.6127 (2)	0.0143 (2)	0.0445 (8)
1.2384 (2)	0.5538 (2)	-0.0738 (2)	0.0442 (8)
1.1234 (2)	0.5428 (2)	-0.1067 (2)	0.0368 (7)
1.1030 (2)	0.4961 (2)	-0.1999 (2)	0.0407 (8)
0.9822 (2)	0.4839 (2)	-0.2088 (2)	0.0403 (8)
0.9316 (2)	0.5802 (2)	-0.2191 (2)	0.0356 (7)
0.9462 (2)	0.7440 (2)	-0.1895 (2)	0.0384 (7)
0.9969 (2)	0.7266 (2)	-0.2819 (2)	0.0440 (8)
0.9692 (2)	0.6278 (2)	-0.3056(1)	0.0394 (6)
1.0599 (2)	0.5785 (2)	-0.3497 (2)	0.0485 (9)
1.1438 (2)	0.5504 (2)	-0.2823 (2)	0.0429 (8)
1.2455 (2)	0.5736 (2)	-0.2902 (2)	0.0555 (9)
1.3268 (3)	0.5525 (3)	-0.2199 (2)	0.071 (1)
1.3072 (1)	0.6014 (2)	-0.1360 (1)	0.0547 (6)
1.1270 (2)	0.6393 (2)	0.1421 (1)	0.0669 (7)
0.6183 (1)	0.6205 (1)	0.0452 (1)	0.0484 (5)
0.7296 (1)	0.6427 (2)	0.1921 (1)	0.0562 (6)
0.5561 (2)	0.6034 (2)	0.0337 (2)	0.061 (1)
0.7870 (3)	0.6581 (3)	0.2740 (2)	0.071 (1)
0.6819 (3)	0.6841 (2)	-0.3285 (2)	0.057 (1)
0.7274 (2)	0.6682 (2)	0.4264 (2)	0.0467 (8)
0.6297 (2)	0.6252 (3)	-0.4775 (2)	0.066 (1)
0.5472 (3)	0.6179 (3)	0.4007 (3)	0.089 (1)
0.5154 (3)	0.7174 (3)	-0.3805 (3)	0.105 (1)
0.5969 (3)	0.7556 (3)	0.3357 (2)	0.070(1)
0.6170 (3)	0.5938 (3)	-0.3195 (3)	0.084 (1)
0.7644 (3)	0.7572 (2)	-0.4645 (2)	0.062 (1)
0.7981 (3)	0.8259 (2)	-0.4911 (2)	0.100(1)
0.8114(2)	0.6031(1)	0.4301(1)	0.0660 (7)

REGULAR STRUCTURAL PAPERS

C1 C2 C3 C4 C5 C6 C7 C8

N9 C10

C11 C12 C13 C14 C15 C16 C17 C18 N19 C20

C20 C21 C22 C23 O24

O25 O25 O26 O27 C28 C29 C1'

Table 2.	Geometric pa	rameters (Å, °) f	br (6)
C1C2	1 379 (4)	C15-C16	1 522 (4)
C1_C6	1 302 (3)	C16_N19	1 510 (3)
C_{2}	1.372(3)	C17 - C18	1.510(5) 1.511(4)
$C_2 = C_3$	1.405 (4)	C18 N10	1.311(4)
C2	1.309 (3)	N10 C20	1.493 (4)
C3	1.390 (4)	N19	1.465 (4)
02/	1.378(3)	N19-H9	1.70 (4)
C4—C5	1.385 (4)	C20—C21	1.494 (4)
C5C6	1.375 (3)	C21-C22	1.321 (4)
C5—N9	1.427 (3)	C22—C23	1.477 (4)
C6C7	1.506 (3)	C23—O24	1.432 (4)
C7—C8	1.557 (3)	O26—C28	1.411 (4)
C7C16	1.545 (4)	O27—C29	1.414 (4)
C7C17	1.539 (4)	C1'-C2'	1.557 (4)
C8-N9	1.486 (3)	C1'-C6'	1.478 (5)
C8-C13	1.520 (4)	C1'-C7'	1.531 (5)
N9-C10	1.371 (3)	C2' - C3'	1.559 (4)
C10-C11	1 504 (4)	$C_{2}^{\prime} - C_{8}^{\prime}$	1 463 (5)
C10_025	1,215 (3)	$C_{2}^{\prime} = O_{10}^{\prime}$	1 405 (4)
C10 = 025 C11 = C12	1.538 (4)	$C_{2}^{\prime} = C_{4}^{\prime}$	1 528 (5)
C12 - C12	1.536 (4)	$C_{3} = C_{4}$	1.526 (5)
C12-C13	1.320 (4)	C4 = C3	1.500(0)
024	1.425 (3)	(4 - 0)	1.513(0)
C13-C14	1.538 (4)	C5' - C6'	1.329 (5)
C14C15	1.527 (4)	C8' N9'	1.137 (5)
C14–C21	1.520 (4)	O10' H9'	1.09 (4)
C2C1C6	1193(2)	C15-C14-C21	108 9 (2)
$C_1 = C_1 = C_0$	110.8 (2)	C13 - C14 - C21	108.5 (2)
C1 = C2 = C3	174.6 (2)	C14 - C15 - C16	114.9(2)
$C_1 = C_2 = 0.20$	124.0(2)	C7 - C16 - N10	105.0 (2)
$C_3 - C_2 - C_{20}$	113.0 (2)		103.9(2)
(2-(3-(4)))	121.4 (2)	CI_{3} $-CI_{0}$ $-NI_{9}$	111.2 (2)
C2C3O27	115.1 (2)	C/_CI/_CI8	103.7 (2)
C4-C3-O2/	123.6 (2)	CI/CI8N19	105.4 (2)
C3C4C5	117.3 (2)	C16—N19—C18	107.7 (2)
C4C5C6	122.3 (2)	C16—N19—C20	112.8 (2)
C4C5N9	128.0 (2)	C18—N19—C20	111.9 (2)
C6-C5-N9	109.7 (2)	N19-C20-C21	112.3 (2)
C1-C6-C5	120.0 (2)	C14-C21-C20	115.0 (2)
C1C6C7	128.8 (2)	C14-C21-C22	121.4 (3)
C5-C6-C7	111.0 (2)	C20-C21-C22	123.5 (3)
C6-C7-C8	102.4 (2)	C21-C22-C23	123.5 (3)
C6-C7-C16	116.1 (2)	C22-C23-O24	112.2 (3)
C6-C7-C17	113.2 (2)	C12-024-C23	114.6 (2)
C8-C7-C16	113.9 (2)	C2-026-C28	116.5 (2)
C8-C7-C17	110.0 (2)	$C_{3} = 027 = C_{29}$	117.2 (2)
C16-C7-C17	1014(2)	$C_{2}^{\prime} - C_{1}^{\prime} - C_{6}^{\prime}$	107.4 (3)
C7_C8_N9	104.3(2)	$C_{2}^{\prime} - C_{1}^{\prime} - C_{7}^{\prime}$	98.6 (3)
C_{1}^{-} C_{2}^{-} C_{12}^{-}	104.5(2)	$C_{2} = C_{1} = C_{1}$	101.0 (3)
NO C9 C12	106.2 (2)	$c_0 - c_1 - c_1'$	101.9 (3)
N9-00-015	100.2 (2)	$c_1 - c_2 - c_3$	102.1 (2)
C3	109.5 (2)	$c_1 - c_2 - c_6$	109.8 (3)
C5N9C10	125.7 (2)	C1 - C2 - 010	114.0 (2)
C8-N9-C10	119.3 (2)	$C_{3}^{-} - C_{2}^{-} - C_{8}^{-}$	114.1 (3)
N9-C10-C11	114.9 (2)	C3' - C2' - 010'	107.9 (2)
N9—C10—O25	122.7 (2)	C8' - C2' - O10'	108.9 (2)
C11-C10-O25	122.4 (2)	C2' - C3' - C4'	101.9 (3)
C10-C11-C12	118.0 (2)	C3'-C4'-C5'	104.9 (3)
C11-C12-C13	110.3 (2)	C3' - C4' - C7'	101.6 (3)
C11-C12-O24	104.8 (2)	C5'-C4'-C7'	102.3 (3)
C13-C12-O24	114.7 (2)	C4'—C5'—C6'	106.3 (3)
C8-C13-C12	107.4 (2)	C1'-C6'-C5'	107.8 (3)
C8-C13-C14	112.3 (2)	C1'-C7'-C4'	92.8 (3)
C12-C13-C14	118.7 (2)	C2'-C8'-N9'	176.2 (4)
C13-C14-C15	1068(2)	C2' = O10' = H9'	100(1)
C13 - C14 - C21	115 1 (2)	N19_H9'_010'	151 (3)
015-014021	115.1 (2)	MI)=II) =010	151 (5)
Compound (7)			
Constal data			
Crysiai aata			
CarHacNaO. Cal	H-NO-	Cell parameters	from 25
$C_{23} = C_{2} + C_{1} + C_{1}$	1,1102		1.5m 2.5
$M_r = 531.01$		reliections	
Orthorhombic		$\theta = 12 - 14^{\circ}$	
P2,2,2		$\mu = 0.091 \text{ mm}^{-1}$	
12 279 (2)	Å	T = 20 V	
a = 12.3/8(2)	n,	I = 294 K	
b = 14.088 (2)	A	Elongated plate	
c = 14.582(3)	Ă	$0.35 \times 0.20 \times 0$	0.15 mm
/ •			

V = 2542 (1) Å ³ Z = 4 $D_x = 1.39 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$	Colorless Crystal source: crystallized from methanol
Data collection	
Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: empirical (Walker & Stu- art, 1983) $T_{min} = 0.9631, T_{max} =$ 0.9994 3154 measured reflections 2873 independent reflections	2514 observed reflections $[l > 3.0\sigma(l)]$ $R_{int} = 0.024$ $\theta_{max} = 25.95^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 16$ $l = -17 \rightarrow 17$ 3 standard reflections frequency: 50 min intensity variation: -1.86%
Refinement	
Refinement on F Final $R = 0.036$ wR = 0.043 S = 1.195 2514 reflections 456 parameters H atoms refined isotropically $w = 4F_o^2/[\sigma^2(F_o^2) + 0.0016F_o^4]$ $(\Delta/\sigma)_{max} = 0.039$ $\Delta\rho_{max} = 0.1953$ e Å ⁻³	$\Delta \rho_{\min} = -0.1135 \text{ e } \text{\AA}^{-3}$ Extinction correction: isotropic (Zachariasen, 1963) Extinction coefficient: 0.30×10^{-6} Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 3. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for (7)

U _{eq} =	$\frac{1}{3}\sum_i\sum_jU_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$
-------------------	---

x	у	z	U_{eq}
0.7744 (2)	0.6260 (2)	-0.0549 (2)	0.0326 (8)
0.7239 (2)	0.6232 (2)	0.0303 (2)	0.0360 (8)
0.7845 (2)	0.6311 (2)	0.1104 (2)	0.0372 (8)
0.8957 (2)	0.6434 (2)	0.1072 (2)	0.0331 (8)
0.9440 (2)	0.6458 (2)	0.0213 (2)	0.0313 (8)
0.8862 (2)	0.6373 (2)	-0.0579 (2)	0.0297 (8)
0.9575 (2)	0.6497 (2)	-0.1419 (2)	0.0284 (8)
1.0726 (2)	0.6404 (2)	-0.0987(2)	0.0280 (7)
1.0565 (2)	0.6548 (2)	0.0010(2)	0.0301 (6)
1.1391 (2)	0.6357 (2)	0.0591 (2)	0.0386 (8)
1.2474 (2)	0.6150 (2)	0.0147 (2)	0.0396 (9)
1.2463 (2)	0.5600 (2)	-0.0748 (2)	0.0378 (9)
1.1307 (2)	0.5463 (2)	-0.1106(2)	0.0311 (8)
1.1134 (2)	0.5002 (2)	-0.2042 (2)	0.0366 (9)
0.9904 (2)	0.4850 (2)	-0.2134 (2)	0.0359 (9)
0.9364 (2)	0.5811 (2)	-0.2207 (2)	0.0312 (8)
0.9423 (2)	0.7464 (2)	-0.1888(2)	0.0330 (8)
0.9966 (3)	0.7320 (2)	-0.2801 (2)	0.0402 (9)
0.9720 (2)	0.6321 (2)	-0.3061 (2)	0.0361 (7)
1.0651 (3)	0.5863 (2)	-0.3531 (2)	0.0427 (9)
1.1510(3)	0.5598 (2)	-0.2848 (2)	0.0392 (9)
1.2525 (3)	0.5881 (3)	-0.2924 (2)	0.049 (1)
1.3372 (3)	0.5679 (3)	-0.2216 (2)	0.057 (1)
1.3135 (2)	0.6136 (2)	-0.1360(1)	0.0455 (6)
1.1294 (2)	0.6367 (2)	0.1428 (1)	0.0622 (8)
0.6145 (2)	0.6119 (2)	0.0418 (1)	0.0457 (6)
0.7266 (2)	0.6267 (2)	0.1899 (1)	0.0499 (7)
0.5520 (3)	0.5985 (3)	-0.0382 (3)	0.059 (1)
0.7842 (3)	0.6254 (3)	0.2722 (3)	0.074 (1)
0.6677 (3)	0.6790 (3)	-0.3258 (2)	0.061 (1)

1636

C2' C3'	0.7224 (3)	0.6669 (2)	0.422	20 (2)	0.046 (1)
C4'	0.5383 (3)	0.6240 (3)	-0.40	30 (3)	0.033(1)
C5'	0.5505 (5)	0.0240 (3)	_0.38	10 (3)	0.072(1)
C6'	0.5057 (3)	0.7584 (3)	-0.33	36 (3)	0.069(1)
$\tilde{07}'$	0.6006 (2)	0.7504 (5)	0.324	51 (2)	0.003(1)
C8'	0.0000(2)	0.3574 (2)	-0.32	51 (2) 52 (2)	0.065(1)
NO ⁷	0.7034(3)	0.1316 (3)	0.43	32 (2) 70 (2)	0.033(1)
010/	0.8011(3)	0.6270 (3)	-0.47	10 (2)	0.079(1)
010	0.6009 (2)	0.0003 (2,	-0.424	+3 (2)	0.0044 (8)
Tab	le 4. Geometr	ic para	meters (Å	, °) for (7	7)
C1-C2 C1-C6	1.392	(4) C	C15-C16	1	1.513 (4)
$C_1 = C_0$	1.394		10		1.505 (4)
$C_2 - C_3$	1.392	(\mathbf{r}) (\mathbf{c}) (\mathbf{c})	17-018		1.303 (4)
$C_2 = C_2 $	1.373	(J) C (A) N	10-020		1 480 (4)
$C_{3}-027$	1.365	(4) N	19-H7'		54 (4)
C4-C5	1 380	(4) (4)	20-021		1.54 (4) 1.504 (4)
C5-C6	1 365	(4) (4)	20 021		1 322 (5)
C5-N9	1,505	(4) (4)	21 - 022 22 - 023		1.522 (5)
C6_C7	1.430	(4) (4)	22-024		1 434 (4)
C7C8	1.520	(4) (4)	25 024		1 412 (4)
C7-C16	1.504	(4) (4)	20 - 20		1 395 (4)
C7 - C17	1.525	(4) (4)	1' - C2'		1.575 (4)
C8-N9	1 481	(4) (4)	1'-0'		1 494 (6)
$C_{8}-C_{13}$	1.518	(4) (4)	1' - 07'		1 417 (5)
N9_C10	1 355	(4) (4)	ン ン ー い		1 548 (5)
	1.555	(4) (4)	ン/_C8/		1.540 (5)
C10-025	1.317	(4) (4)	2' - 0'		1.403 (4)
C11 - C12	1.519	(4) (4)	3' - C4'		1.556 (5)
C_{12} $-C_{13}$	1 534	(4) (4)	4' - C5'		1.000 (0)
C12 - C13	1.034	(4) (4)	4' - 07'		1 422 (5)
C13 - C14	1.527	(4) (4)	'5'-C6'		1 292 (6)
C14-C15	1.543	(4) (4)	28'N9'		1 134 (5)
C14-C21	1.518	(4)	010'-H7'		1.23 (4)
m c1 cc	110 6	() ()			100.0 (2)
$C_{1} = C_{1} = C_{0}$	118.5	(3) (3)	-13 - 014 - 0	.21	108.2 (3)
C1 - C2 - C3	6 120.3	(3) (3)	7 - C16 - C1	5	106.3(2)
$C_1 - C_2 - O_2$	6 1160	(3) (3)	7-C16-N1	10	10.1(2) 105.7(2)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}$	121 1	(3)	C15_C16_N	J10	103.7(2)
$C_2 - C_3 - C_4$	7 1152	(2) (2)	7-017-01	8	1027(2)
$C_4 - C_3 - O_2$	7 123.7	(3) (3)	17-C18-N	119	105 1 (3)
$C_{3}-C_{4}-C_{5}$	117 4	(3) (3)	16-N19-C	18	107.5(2)
C4-C5-C6	122.4	(3)	C16-N19-C	20	1136(2)
C4-C5-N9	127.5	(3)	C18-N19-C	20	111.7(2)
C6C5N9	110.1	(2)	119-C20-C	21	110.5 (3)
C1-C6-C5	120.3	(3)	C14-C21-C	20	115.6 (3)
C1-C6-C7	127.9	(3)	C14—C21—C	222	121.5 (3)
C5-C6-C7	111.6	(2) (C20-C21-C	222	122.8 (3)
C6-C7-C8	101.2	(2) (C21-C22-C	23	123.3 (3)
C6C7C1	6 115.8	(2) (2)	C22-C23-C	024	111.8 (3)
C6-C7-C1	7 112.9	(2) (C12-024-C	223	115.1 (3)
C8-C7-C1	6 114.0	(2) (2 - 026 - C2	28	117.0 (2)
C8-C7-C1	7 111.4	(2) (2)	$C_{3} = 027 = C_{2}$	29	117.6 (2)
C16C7C	17 101.9	(2) ($2^{\prime}-C1^{\prime}-C$	6′	107.4 (3)
C7C8N9	105.2	(2) (2' - C1' - 0	7′.	99.9 (3)
C7-C8-C1	3 117.3	(2) (C6' C1' O	7'	102.8 (3)
N9-C8-C1	3 107.2	(2) (2)	C1' - C2' - C	3'	100.8 (3)
C5-N9-C8	108.8	(2)	C1' - C2' - C'	8'	110.6 (3)
C5-N9-C1	0 126.0	(2) (2)	C1' - C2' - 0	10'	114.6 (3)
C8-N9-CI	0 119.0	(2)	$-C^{2} - C^{2} - C^{2}$	8.	113.7 (3)
N9C10C	11 116.0	(2)	-02 -0	10'	108.5 (3)
N9-CI0-0	123.1	(3)	-02 -0	10	108.3 (3)
	JZJ 120.9	(3) (3)	$\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$	4 5/	77.0 (3)
	C12 11/.2	(3) (3)	$-04^{\circ} - 04^{\circ}$	ט זי	100.3 (3)
	CIJ 111.4	(2) (2)	-50	1 7/	101.2 (3)
C13 - C12 - C	024 100.1 074 1122	(2) (2)	-0^{-0}	6'	102.3 (3) 106 5 (4)
C8_C13_C	12 1070	(2) (2)	-0.5 - 0.0	5'	100.3 (4)
C_{8}	14 107.0	(2) (2)	1'	5 A'	05 7 (2)
C_{12}	114.0 114.0	(2) (2)	21 - 07 - 0 22' - C2' N	- 0'	75.7 (3) 175.2 (4)
C13_C14_0	C15 1060	(2) (2)	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	H7'	105 (1)
C13-C14-0	C21 114.4	(3) N	19-H7'-O	010'	154 (3)
		• •	•	-	

Backgrounds were obtained from analysis of the scan profile (Blessing, Coppens & Becker, 1974). Similar H atoms

were constrained to have the same isotropic thermal parameter. Molecular-mechanics calculations were carried out using SYBYL (Tripos Associates, 1991). Starting coordinates for complex (7) were taken from (6) and refined. Data collection: CAD-4 (Enraf-Nonius, 1977). Cell refinement: CAD-4. Data reduction: PROCESS in MolEN (Fair, 1990). Program used to solve structure (direct methods): MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Program used to refine structure: LSFM in MolEN. Molecular graphics: ORTEP (Johnson, 1976). Software used to prepare material for publication: CIF in MolEN.

We thank the College of Arts and Sciences of the University of Toledo and the Fonds Herbette de l'Université de Lausanne for financial support.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71150 (59 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1047]

References

Black, K. A. &	Vogel, P.	(1984).	Helv. Chim	. Acta. 67	. 1612-1615

- Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-492
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An interactive intelligent system for crystal structure analysis. User's manual. Enraf-Nonius, Delft, The Netherlands.
- Gasteiger, J. & Marsili, M. (1980). Tetrahedron, 36, 3219-3222.
- Glover, S. S. B., Gould, R. O. & Walkinshaw, M. D. (1985). Acta Cryst. C41, 990-994.
- Gould, R. O., Taylor, P. & Walkinshaw, M. D. (1984). Acta Cryst. A40. C-85
- Gould, R. O. & Walkinshaw, M. D. (1984). J. Am. Chem. Soc. 106, 7840-7842
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

LeDrian, C. & Greene, A. E. (1982). J. Am. Chem. Soc. 104, 5473-5483.

- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium. Pasteur, L. (1853). C. R. Acad. Sci. 37, 162-166.
- Quinkert, G., Schmalz, H.-G., Dzierzynski, E. M., Durner, G. & Bats, J. W. (1986). Angew. Chem. Int. Ed. Engl. 25, 992–993.
- Schneider, H.-J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1417-1436.
- Toda, F., Tanaka, K. & Ueda, H. (1981). Tetrahedron Lett. 22, 4669-4672.
- Toda, F., Tanaka, K., Ueda, H. & Oshima, T. (1985). Isr. J. Chem. 25, 338-345.

Tripos Associates (1991). SYBYL. Versions 5.41 and 5.5. Tripos Associates, St. Louis, Missouri, USA.

Vogel, P., Fattori, D., Gasparini, F. & LeDrian, C. (1990). Synlett, pp. 173-185.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

- Warm, A. & Vogel, P. (1986a). J. Org. Chem. 51, 5348-5353.
- Warm, A. & Vogel, P. (1986b). Tetrahedron Lett. 27, 5615-5616.

Warm, A. & Vogel, P. (1987). Helv. Chim. Acta, 70, 690-700.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.